
State of Indiana DMPP 2020 - Specifications
Message Header Processing in the Law Enforcement Environment using the

Datamaxx Message Processing Protocol
(DMPP-2020)

Foreword

This document is meant to offer a brief discussion of the benefits of utilizing this protocol
within Law Enforcement systems. This protocol has been chosen as the mechanism to
provide compliance with national standards while also providing an environment that is
not burdensome for regional/remote systems to implement.

Control Terminal Agencies (CTA) within each State must deploy systems that comply
with the requirements of national agencies such as NCIC and NLETS. Some of these
requirements are listed below:

Implementing a protocol that provides guaranteed message delivery

Identification of users responsible for transactions

Ability to process transactions that meet national standards

Ability to process image data

All of these requirements are implemented in the system with this protocol. DMPP 2020
is an application to application protocol which guarantees delivery of messages. The
CTA must be able to determine the individual operator responsible for any message that
traverses through the system. The OpenFox™ system as implemented in conjunction
with the DMPP 2020 protocol and the inclusion of the user-id field achieves this
requirement. The system supports all standard NLETS and NCIC 2000 transactions. In
addition, the system using will also be able to process images. DMPP 2020 is one of the
solutions that provides the framework required to process binary data.

In addition to the national standards the CTA has an obligation to provide an environment
to regional systems which is consistent and can be implemented with a reasonable
amount of effort while using state-of-the-art protocols and network facilities. The DMPP-
2020 protocol as implemented in the OpenFox™ system provides such an environment.

The DMP2020 portion of this document was written by Datamaxx Applied Technologies
and describes the protocol. The remainder of the document has been written by Computer
Projects of Illinois, Inc., and is meant to offer further details and message format
examples. This document will be updated at a later date with specific examples for your
implementation.

MESSAGE HEADER PROCESSING IN THE LAW ENFORCEMENT
ENVIRONMENT
USING THE DATAMAXX MESSAGE PROCESSING PROTOCOL®
DMPP-2020®
Technical Specification

Published By:

DATAMAXX APPLIED TECHNOLOGIES, INC.
3780 PEDDIE DRIVE
TALLAHASSEE, FLORIDA, 32303
(850) 575-1023

http://www.datamaxx.com Revision Levels:

Revision 0, August 1996
Revision 1, October 1996
Revision 2, June 1997
Revision 3, September 1997 (Registered Copyright – TX 4-624-223)
Revision 4, September 1997
Revision 5, September 1998
Revision 6, July 2000

This document contains proprietary information and trade secrets, and may only be
disclosed by written permission of Datamaxx Applied Technologies, Inc.

"Datamaxx Message Processing Protocol" and "DMPP-2020" are registered trademarks
of Datamaxx Applied Technologies, Inc. Other product names used within this document
are the trademarks of their respective holders and are hereby acknowledged as such.

©1996 – 2000 DATAMAXX Applied Technologies, Inc. All Rights Reserved

No portion of this document may be reproduced, by any means without the express
written permission of the copyright owner.

Printed in the United States of America

Introduction.

The purpose of this paper is to define a specification that can be implemented to provide
robust message handling in the Law Enforcement Environment.

As the transition to modern communications protocols continues, new problems and
challenges are presented to developers. This is especially true with "Open Systems", in

which there are components from various vendors, all of which must operate in harmony.

With legacy systems, one vendor had control of processing, from the end user keyboard
to the host system and thus could control all standards, and could implement necessary
functionality to ensure that all messages were delivered reliably.

With "Open Systems" and diverse vendors, functionality tends to be implemented as a
series of layers, with information being passed up and down between layers.
Complicating this is that fact that the layers may be implemented as a series of disparate
free running processes, in which data is passed back and forth. Thus, an application may
send data through several layers and processes about which it has no knowledge. Each
process or layer may acknowledge to the previous process or layer that the data was
successfully processed -- however error messages are often not communicated to
previous processes, the chain, and thus the originating application may not be aware of an
error. Thus the need for "application to application" or "end to end" acknowledgment.

Complicating the situation is that "Open Systems" are truly open, as they are designed to
allow easy interconnection. This immediately provides points of access that can be used
for unauthorized or abusive use of a system.

A further factor is that new protocols are "peer to peer" and do not provide a continuous
status monitoring (as is the case with "master slave" type protocols). This can lead to
situations in which an application can send a message to a destination that can not
process it. Since there is no immediately available status, error indications may not be
provided for several minutes (or at all) and the sending application will not be aware of
the situation.

Consider the following scenario:

Host prepares a message for transmission.

Host passes the messages to Communications sub-system.

Communications sub-system passes message to communications controller.

Sub-system sends message immediately to destination, but is not aware if any
intermediate devices (e.g. bridges or routers) are inoperative.

Remote communications processor receives message, acknowledges it and places it in a
buffer.

Remote application crashes before reading buffer, or operator powers system off.

In this scenario the host application would consider that the messages has been correctly
processed, when indeed it was not. Furthermore, many messages may have been sent and
buffered for a remote application that never processes them. There are also many other
potential points of failure that can leave the host in a state assuming a message was
delivered, when it was not actually delivered.

In order to eliminate these potential points of failure, a structure must be defined that can
be used universally. The approach defined herein uses a "Message Header" processing to
achieve full end to end confirmation of all messages.

The processing strategy is known as the "Datamaxx Message Processing Protocol
(DMPP-2020®)"

Concepts

In developing the message header processing, many factors were considered. These
include:

Compatibility with NCIC designs Compatibility with State designs Full message delivery
confirmation Communications Protocol Independent Applicable to all processing
platforms Programmer friendly Support for security issues Support for data encryption
Features can be configured to meet different requirements Flow control is automatically
provided to avoid flooding of a target system

The design that evolved, after much research, involves the implementation of a special
header in each message packet. This header contains control fields that can be used to
provide all functionality, as needed. The header can also be defined as "optional" in order
to allow remote systems to be converted as available, rather than requiring a "big bang"
conversion.

This header will be referred to as the "Extended Message Header" throughout this paper.

A discussion of each of the concepts is warranted, in order to provide background and
rational for the design.

Compatibility with NCIC designs

This design leverages off the structure proposed for the NCIC-2000 system, in order to
reduce research and development time. It is not though, an exact copy of the NCIC
structure.

Compatibility with State designs

This design allows the Extended Message Header to be placed in front of existing
message formats, with no requirement to change those formats. This alleviates the
requirement to modify existing processing applications.

Full Message Delivery Confirmation

The Extended Message Header provide both positive and negative confirmation of
message delivery. For negative delivery confirmation a reason code is provided.

Communications Protocol Independent

Although the obvious protocol that this specification can be applied to is TCP/IP, it is
actually protocol independent. It can operate on any binary transparent protocol, ranging
from serial links (e.g. mobile communications via CPDP IP packets) to mainframe
protocols (e.g., LU 6.2).

Applicable to all Processing Platforms

This design is compatible with all processing platforms. This is achieved by careful
sizing and alignment of all data fields, in order to avoid alignment and size specification
errors that are generated by some processors.

Programmer Friendly

The design guards against assumptions made by various compilers. For example, some
compilers will automatically initialize data structures to null values, or just plain junk.
This can lead to subtle processing flaws. Thus this specification does not allow any
command, directive or response code that is all null values, and requires that all values be
verified. It is also programming language independent. All Extended Message Header
processing is symmetrical with respect to direction (inbound and outbound).

Support for Security Issues

The Extended Message Header provides for full authentication of all connections,
including dynamic re-verification of connections at random intervals.

Support for Data Encryption

The Extended Message Header provides for full encryption of the data portion of
messages. This allows a full software solution to be implemented, independent of all
communications hardware. Dynamic key update and control is supported.

Features can be Configured to Meet Different Requirements

The features can be configured to meet the needs of a specific system. For example, the
Extended Message Header can be implemented using a few of it capabilities and then
more features can be activated as required.

Levels of Implementation

The specification can be implemented as "levels of service", depending on what options
are selected. Thus it can be adapted to many different needs and environments.

Flow Control

The Extended Message Header can provide a natural flow control, if desired by the
implementer.

Extended Message Header

The Extended Message Header is a structure that is inserted in a cleanly delineated
message block. The general structure of the message block is as follows:

STAP 4 character start pattern
Block Length 32 bit signed integer (See note below)
Header Extended Message Header (Defined in Section 4)
Data Variable length data
STOP 4 character stop pattern

Note: The Block Length field encompasses the whole packet, including the STAP (Start
Pattern), Block Length field itself, Extended Message Header, data (if any present) and
the STOP (Stop Pattern).

For consistency across platforms, all values in the header are stored in "Network Byte
Order". This order places the most significant byte first, descending to the least
significant byte reading to the right. This is contrary to method used on some Intel
platforms (notably the 80X6 family) and thus the implementation must handle this
situation as required.

Definitions

The "STAP" (Start Pattern) and "STOP" (Stop Pattern) are currently defined as
hexadecimal patterns as follows:

STAP ff,00,aa,55 (\xff\x00\xaa\x55)
STOP 55,aa,00,ff (\x55,\xaa,\x00,\xff)

The minimum block size is 28 characters, which can occur when the Extended Message
Header length is 16 and there is no data present. The maximum block size is
2,147,483,647 (231 – 1). Thus, the value of the Block Length field must never be less
than 28 or more than 2,147,483,647.

Extended Message Header Format

The Extended Header Message has the following required format:

Header Length - 16 bit signed integer Function Code - 16 bit signed integer
Validation Field - 32 bit unsigned integer Data Length - 32 bit signed
integer Status Code - 16 bit signed integer Destination - 16 bit signed
integer

The Extended Header Message has the following optional extension for encryption:

Length - 16 bit signed integer
Request Type - 16 bit signed integer
Key Id - 32 bit unsigned integer

In the following charts, all numbers are expressed as decimal integers. They can be
converted to other number systems (e.g., octal or hex) as required. Note how the use of
zeros is consistently avoided.

Each field is discussed in detail, as follows:

Header Length

The length is a 16 bit integer that encompasses all the header data, including the length
field. It will be either 16 or 24, depending on whether or not an encryption control is
present.

Function Code

The Function Code defines the processing path of the message. Currently defined values
include:

1 - Data message with no acknowledgment, final block
2 - Data message with acknowledgment, final block

3 - Data message with no acknowledgment, more blocks to follow (See note
below)
4 - Data message with acknowledgment, more blocks to follow (See note
below)
17 - Positive acknowledgment to data message (Status Code is set to
"Successful receipt of data message")
18 - Negative acknowledgment to data message (Error is defined in the Status
Code field)
33 - Request status of system
34 - Response to status request (Status is defined in the Status Code field)
49 - Send Coded Message 1
50 - Send Coded Message 2
65 - Positive response to Coded Message 1
66 - Positive response to Coded Message 2

Note: Function Codes 3 and 4 are used to indicate that the message will be sent in
multiple blocks with Function Codes 1 and 2 used to indicate the last block. Each block
in such messages must use successive values in the validation field.

Validation Field

This unsigned integer field defines a number that is used to create a unique identification
for each message, and will be returned on its corresponding acknowledgment. Its format
is up to the implementer. This value may be all zeros, as it is not inspected but simply
returned to the requester intact.

Data Length

This field defines the length of the actual data portion of the message. It is used for
redundancy checking. It must be zero for status and status response messages. The
maximum value is 2,147,483,619 (231 – 1 – 28).

Status Codes for Request Messages

This field contains the status code that can be included in request messages. Currently
defined values include:

01 - Message may contain binary object in Unisys format
02 - Message doesn’t contain binary object
03 - Message contains binary object in NCIC transaction format
04 - Message contains binary object in NCIC response format
05 - Message contains binary object in DSEO-2020 format
06 - Message contains binary object in Unisys format
33 - Message may contain binary object in Unisys format

Note: Any message that can contain a binary object in any of the supported formats can
contain multiple binary objects but they must all be in the same format.

Status Codes for Response Messages

This field contains the status code that can be returned in responses. They should be used
only with responses -- never part of request messages (i.e., status codes are not
"piggybacked" onto a request).

The code returned will depend on the type of request received, (e.g., a write request with
acknowledgment, or an explicit request for status). Currently defined values include:

01 - Successful receipt of data message
17 - Permanent (i.e., non recoverable) error occurred (e.g., disk failure)
18 - Temporary (i.e., recoverable) error occurred (e.g., printer out of paper)
19 - Logical error occurred (e.g., too many messages received too quickly, and
thus a queue containing acknowledgments filled up)
20 - Message length exceeds maximum, message will be discarded
33 - Queried destination is available and ready
34 - Queried destination is available, but not ready (e.g., printer has buffer
space, but is out of paper)
35 - Queried destination is not available and not ready
49 - Invalid function code received
50 - Invalid (or non-existent) destination received
51 - Invalid Extended Message Header format (or length) received
52 - Function not supported
65 - Attempt to start encryption with no key definition
66 - Invalid encryption header format (or length) received
67 - Encryption not supported.

Destination

This 16 bit integer defines a logical destination. This permits a packet to be addressed to
different logical units, and effectively creates a "cluster" at a location. The actual
definition is up to the implementer and the configuration. This permits logical units to be
defined for specific purposes (e.g., a destination for "Hit Confirmation" messages), and
permits implementation of message priorities. The value of 0 is invalid. The value of "-1"
is considered a broadcast to all defined destinations.

Encryption Header Length

This 16 bit integer defines the length of the optional encryption header. A length of zero
is invalid.

Encryption Request Type

This 16 bit integer defines the encryption function requested.

Currently defined values include:

1 - Start encrypting messages
2 - Stop encrypting messages
17 - Load encryption Key
18 - Clear encryption key
33 - Set key identification

Key Identification

This 32 bit integer defines the index into the key table to locate the key to be used for
encrypting future messages.

Service Levels

The DMPP-2020™ specification allows for service levels. A service level defines that
functionality that has been activated for a given endpoint on a communications network.

The following service levels are defined:

Level 1 provides the functionality for handling message header functions from 1 through
47 (as they may be defined). This functionality encompasses guaranteed delivery of
messages and full status checking, but does not include authentication or encryption.

Level 2 provides the functionality as described in Level 1 and adds the functionality for
system authentication (function codes 49 through 79, as they may be defined).

Level 3 provides the functionality as described in Level 2 plus adds the encryption
options via the extensions for encryption.

Implementation Notes

The following notes are presented to give an insight into how the Extended Message
Header may be applied to various functions.

Integer Values

In this specification all integers are positive signed values, unless otherwise noted.

Destination Codes

The destination field does not have to replace existing header structures. It is meant to
augment them. This technique permits many logical units to be addressed by a single
Host address (e.g., a single TCP/IP address). This eliminates large control tables, and
their associated maintenance (e.g., holes in firewalls). The application may still process
existing headers (e.g., those used on a BiSync 2780 line).

Flow Control

By use of the "Write with Acknowledge" function, flow control may be achieved. The
application can be structured to allow any number of messages to be outstanding at any
time, subject only to the limits of the receiver. If the limit is set to 1, automatic flow
control is achieved.

Keep Alive Timer

This implementation provides full keepalive support, at the application level. A keepalive
probe is a packet with a Request Status Function code and no data length. If an
appropriate Response to Status Request is returned, then the connection is intact. Note
that this can also be used to temporarily suspend traffic by responding with a Status Code
34 (temporarily unavailable).

Coded Messages

Coded messages are used to authenticate connections. Their use is specific, as follows:

A Session requesting a connection provides a predictive string of data (e.g., a logical
name) and encodes it in such a way that the receiver can decode it. This can be done by
using a known element (e.g., System Name, Date, circuit number, telephone number,
etc.) and encoding it using a Huffman coding, or other encoding process. It sends it as a
Coded Message 1 Function to the receiver.

The receiving session encodes a similar string (that is why it must be predictive) and
compares it to the received string. If a match is found, a response code of 65 is sent, with
no data. If no match, the receiver is silent (Why tell the crook how he failed).

Either side of the session may send a Coded Message 2 request at any time. The Coded
Message 2 has a random data string as its data portion. The receiver then adds another
predictive string of data to the coded data, re-encodes it and returns it as a response of
code 66 to the sender.

The sender of the Coded Message 2 analyzes the response. If valid, processing continues
(there is no response). If invalid, the connection is terminated, due to suspected invasion
of the system.

The exchange of Coded Message 2 functions may occur at any time, thus creating a”
keep-alive”, as well as continually re-authenticating connections.

The encoded data in the Coded Message 2 may also be used as the encryption key, by
inserting the optional encryption header.

Encryption Functions

The encryption functions are implemented implicitly. The presence of the optional
encryption header defines an encryption function. If a Write Data function is performed
with the encryption header, and the header defines a key load, then the data portion of the
message is assumed to be the new key. This is consistent with the concept of loading the
Coded Message 2 data as the key.

The encryption header will only require that the Key Identification field be present for the
"Set Key Identification" function. It will be ignored for other functions. The length field
must always be correct, though.

The "Set Key Identification" is used for systems that do not want to exchange actual keys
as data, but prefer to keep a table loaded at a site. In that case, the key id is the index into
the table.

Note that this does not speak to the encryption algorithm actually used. The algorithm
strategy must be defined by the implementer.

Configuration Control

The features listed may be made configurable. For example, some systems may not
support encryption, while others may allow many messages to be queued before
acknowledgment. Other systems may require coded messages. These should all be
implemented via service levels, not by specific option enabling techniques.

Precise Error and Status Reporting

The response codes permit isolation of errors clearly and cleanly. For example, there are
codes for both "Invalid Function" and "Unsupported Function". This permits an interface
to query a peer interface to determine what level of functionality is supported.

Current OpenFox™ Implementation

This section of the specifications is meant to provide practical examples for the
implementation of the DMPP-2020 protocol in the OpenFox™ environment. The

following section will document the specific technique which OpenFox™ uses to provide
reliable, binary object capable communications. The OpenFox™ system embraces the
widely accepted standards of communication put forth in the NCIC and NLETS TCP/IP
specifications and therefore implements DMPP-2020 in a manner complying with these
national standards. The OpenFox™ system currently implements DMPP-2020 service
level 1. The system uses the application level acknowledgments to reliably deliver
messages, as well as the status checking function to implement an idle line timer. The
OpenFox™ system requires the segmentation of large messages and an indication of
which, if any, message segments contain image data. The OpenFox™ system will require
client data messages to present images in the DSEO-2020 format. The OpenFox™
system does not use the authentication or encryption functions specified in service levels
2 and 3 at this time.

Message Header Fields

There are six fields in the extended message header, which are all used by OpenFox™.
The fields, and the appropriate values, appear below.

Header Length This field is always set to 16 (hex 0010).
Function The functions supported are: (hex)
0001 - Data Message, no ACK, Final Block
0002 - Data Message, ACK requested, Final Block
0003 - Data Message, no ACK, More to Follow
0004 - Data Message, ACK requested, More to Follow
0011 - Positive ACK to data message
0012 - Negative ACK to data message
0021 - Request system status
0022 - Status response
Validation The contents of this field are returned by OpenFox™.
Data Length This field represents the data length as an unsigned 32-bit number.
Please note that no single block may be larger than 65,535.
Status The OpenFox™ uses this field as documented in the DMPP-2020 spec.
Destination The value is always set to hex 0001 on outgoing messages, and ignored on
inbound messages.

Keep Alive

The OpenFox™ uses the status request/response function to act as an idle line timer.
OpenFox™ will terminate a connection that has had no activity for 60 seconds. To
prevent an idle connection from terminating, clients are expected to issue a system status
request message before 60 seconds of idle time. CPI recommends sending this request
every 45 seconds if no other traffic has been sent during that time. The OpenFox™ will
respond with a ‘system available’ status response and reset the idle timer for the
connection.

Message Segmentation

To maximize resource efficiency at the central site and to manage a large number of
client connections the OpenFox™ system requires that messages larger than 65,535 bytes
be segmented. The term segment and block are used interchangeably. If a DSEO-2020
object is present in a message, it must be completely contained within a single message
segment. Please note that a single message segment may contain multiple DSEO-2020
objects (so long as their combined size is under the 65,535 byte limit). A message may be
broken into any number of segments, and each segment need not attain the 65,535 byte
maximum. If the function code for a data message requests an ACK, and is not the final
block, the next block should not be sent until the ACK for the prior block is received.
Likewise, after sending a final block requesting an ACK, the next message should not be
started until the ACK is received. If no ACK is received for a data block within 60
seconds the connection should be closed and a new connection attempted. Any partially
completed message (some blocks sent and ACK’ed but not all) should be resent in its
entirety upon successful establishment of the new connection.

Binary Objects

As documented above, OpenFox™ requires that all inbound and outbound objects be
wrapped in DSEO-2020 format. An object when present must be completely contained
with a single segment. The status field in the DMPP-2020 header should reflect the
content of the block. The two status codes used are:

01 Message segment contains no object data
05 Message segment contains at least one DSEO-2020 formatted image

Please note that in the DMPP-2020 specification status code 01 states “Message may
contain binary object in Unisys format”. Since OpenFox™ does not support Unisys
formatted objects this code is used to indicate no object is present. OpenFox™ will only
scan segments for DSEO-2020 objects if they have the status code set to 05. OpenFox™
will insure that all segments bound for the peer have the status code set correctly, so the
peer need not scan for DSEO-2020 objects if the segment status code is set to 01.

Message Examples

The following are example messages taken from a live system TCP/IP trace. First, we’ll
look at a status request message. The OpenFox™ received the following message from a
client device:

 Offset Hex Data ASCII Equivalent
 -------- ----------------------------------- ------------------
 00000000 ff00aa55 0000001c 00100021 31363138 |...U.......!1618|
 00000010 00000000 00210001 55aa00ff |.....!..U... |

The message breakdown is:

 FF00AA55 Start Pattern
 0000001C Message length (total length of this data message)
 0010 Extended Header length (always 16 - hex 10)
 0021 Function - Request system status
 31363138 Validation Code - this will be returned (see response
below)
 00000000 Data Length - this is zero for status messages
 0021 Status Code - ignored
 0001 Destination - ignored
 55AA00FF Stop Pattern

This message caused OpenFox™ to reset the idle timer for this connection, and respond
with the following message:

 Offset Hex Data ASCII Equivalent
 -------- ----------------------------------- ------------------
 00000000 ff00aa55 0000001c 00100022 31363138 |...U......."1618|
 00000010 00000000 00210001 55aa00ff |.....!..U... |

The message breakdown is:

 FF00AA55 Start Pattern
 0000001C Message length (total length of this data message)
 0010 Extended Header length
 0022 Function - Status Response
 31363138 Validation Code - echoed from the status request
 00000000 Data Length - this is zero for status messages
 0021 Status Code - Available and ready
 0001 Destination - always set to 1
 55AA00FF Stop Pattern

The next examples are a data message received from the client, and the ack returned by
the OpenFox™. First, the following message is received by OpenFox™ (from a client
device):

 Offset Hex Data ASCII Equivalent
 -------- ----------------------------------- ---------------
 00000000 ff00aa55 00000053 00100002 32313230 |...U...S....2120|
 00000010 00000037 00210001 464f5859 2e52512e |...7.!..FOXY.RQ.|
 00000020 2a484152 52592e4f 4b4f4850 30303339 |*HARRY.INOHP0039|
 00000030 2e53442e 4c49432f 33413236 3739362e |.SD.LIC/3A26796.|
 00000040 4c49592f 31393939 2e4c4954 2f504355 |LIY/1999.LIT/PCU|
 00000050 aa00ff |... |

The message breakdown is:

 FF00AA55 Start Pattern
 00000053 Message Length
 0010 Extended Header length
 0002 Function - Data message, ACK requested, final block.
 32313230 Validation Code
 00000037 Data length - length of the actual message data (from
FOXY to LIT/PC).
 0021 Status Code - ignored
 0001 Destination - ignored
 464F thru 5043 Message Data (text)
 55AA00FF Stop Pattern

The OpenFox™ responds with:

 Offset Hex Data ASCII Equivalent
 -------- ----------------------------------- ------------------
 00000000 ff00aa55 0000001c 00100011 32313230 |...U........2120|
 00000010 00000000 00010001 55aa00ff |........U... |

The message breakdown is:

 FF00AA55 Start Pattern
 0000001C Message Length
 0010 Extended Header length
 0011 Function - Positive ACK
 32313230 Validation Code - echoed from the input message
 00000000 Data length - zero
 0001 Status Code (meaningless)
 0001 Destination (always 1)
 55AA00FF Stop Pattern

The next two examples are a message generated by OpenFox™ and sent to a client, as
well as the client's response. First, the following message was sent by OpenFox™ to a
client device:

 Offset Hex Data ASCII Equivalent
 -------- ----------------------------------- ------------------
 00000000 ff00aa55 000000b4 00100002 00000001 |...U............|
 00000010 00000098 00010001 464f5859 2e2a4841 |........FOXY.*HA|
 00000020 5252592e 4e434943 20202020 20202031 |RRY.NCIC 1|
 00000030 33363731 2031373a 33353a32 32204d52 |3671 17:35:22 MR|
 00000040 49203039 30313831 0d0a464f 58592020 |I 090181..FOXY |
 00000050 20202020 20303030 30392031 373a3335 | 00009 17:35|
 00000060 3a323220 30362f31 362f3230 30300d0a |:22 06/16/2000..|
 00000070 0d0a314c 3031464f 58592c4d 52494430 |..1L01FOXY,MRID0|
 00000080 39303138 300d0a30 4b304850 30303339 |90180..0K0HP0039|
 00000090 0d0a4e4f 20524543 4f524420 4c49432f |..NO RECORD LIC/|
 000000A0 33413236 37393620 4c49532f 53440d0a |3A26796 LIS/SD..|
 000000B0 55aa00ff |U... |

The message breakdown is:

 FF00AA55 Start Pattern
 000000B4 Message Length
 0010 Extended Header length
 0002 Function - Data message, ACK requested, final
 block
 00000001 Validation Code - should be returned in the
 client's ACK
 00000098 Data Length - from FOXY to 'CR''LF'

 0001 Status Code (meaningless)
 0001 Destination (always 1)
 464F thru 0D0A Message Data
 55AA00FF Stop Pattern

The client responded with the following acknowledgment:

 Offset Hex Data ASCII Equivalent
 -------- ----------------------------------- ------------------
 00000000 ff00aa55 0000001c 00100011 00000001 |...U............|
 00000010 00000000 00010001 55aa00ff |........U... |

The message breakdown is:

 FF00AA55 Start Pattern
 0000001C Message Length
 0010 Extended Header length
 0011 Function - Positive ACK
 00000001 Validation Code - returned from the OpenFox™
 output
 00000000 Data Length - zero
 0001 Status Code - ignored
 0001 Destination - ignored
 55AA00FF Stop Pattern

The examples represent the normal operation of a line. The two systems exchange data
messages, and during idle periods the first example of status request/response is
conducted.

Message ACKs

One final consideration that is not covered in the examples is that data messages may be
sent with a function code of "0001 - data message, no ACK, final block". If the
OpenFox™ sets this value in the function field, it is not expecting an ACK to the
message, and one should not be sent to OpenFox™. Likewise, if a client device sets this
value in the function field, OpenFox™ will honor it and not send an ACK. CPI
recommends the use of the message ACKs for all standard user transactions.

Operator Identification

In order to comply with the CJIS Security Policy published by the FBI, the OpenFox™
system supports the identification of device operators. This feature is implemented
through the use of the message header from the remote system.

The system will validate the User ID and report a security violation if the User ID has not
been configured or the user-id is not associated with the incoming station.

Input Message Formats

Messages from the trusted server workstation to the OpenFox™ system will be
constructed depending on the destination. For this particular type of service the
OpenFox™ system will be configured to support a communications interface called the
‘server’ and either one or all nodes behind the interface called ‘TDAC’ (Trusted
Destination Address Code).

The header associated with input from these devices will be as follows:

 TDAC.Reference.UserID.

 Where:

 TDAC Is the name of the device from which the
 message is originating
 Reference Is a 10 character alphanumeric field
 UserID The user ID field

Message input from these devices will follow the NLETS Format and the NCIC 2000
Format as described below.

The NLETS Format

These messages include all of the valid NLETS MKE's, as well as any State specific
MKE's for which the processing rules are identical to those of NLETS. They will follow
the NLETS standard message format except that the TXT statement will be optional. The
input message must contain a list of the detinations in order for the system to route the
messages.

Following is a description of the NLETS format:

[header.]MKE.ORI.Destinations.Control-Field.TXT(optional) and text.

Where:

 MKE The MKE field is a valid NLETS message key must be configured
 in the system, if not an error message will be returned to the
 input station indicating 'invalid MKE'. In addition, the
 incoming session will be checked to see if it has the authority
 to execute the message key. If not an error message will be
 generated back to originating station indicating 'not
 authorized to use MKE'.

 ORI The ORI must be the valid State ORI assigned to the
 input station. If the ORI is not valid or if it is not
 assigned to the originator an error will be returned.

 DEST The destination field is variable in length, it must be
 composed of a valid two character State code or a valid
 destination depending on the message type. Multiple
 destinations may be specified, in which case they must be
 separated with a comma. The entire field must always be
 terminated with a period.

 CTL-FLD The control field is an optional field. If present the
 first character must be an asterisk and must be followed by
 exactly 10 additional characters. If present the field must be
 terminated with a period, if not present nothing must be sent.

 TXT This is an optional field and is not required.

 TEXT This is the actual text of the message, it is normally
 composed of Message Field Code descriptors and their associated
 data. Each field except the last must be terminated with a
 period.

 Examples:

 [header.]RQ.IN0000000.IL.*1234567890.LIC/ABC123.LIY/2000.LIT/PC

 Where:

 RQ Message key - registration query for out of State
 IN0000000 The ORI
 IL The destination State
 *1234567890 The optional control field
 Text The text of the message comprises the remainder of the
 message

The NCIC 2000 Format

These messages will include all of the valid NCIC and In-State Hotfile MKE's. They will
be routed to the proper destination even though a destination field is not provided. As is
the case with NLET formatted messages, these messages can also generate transactions to
other data bases depending on the specific MKE configuration. All valid State Hotfiles
database and NCIC 2000 transactions will follow this format. The format of the messages
are described below:

[header.]MKE.ORI.text

Where:

 MKE The MKE field must be a valid NCIC message key, if not
 an error message will be returned to the input station
 indicating 'invalid MKE'. In addition, the incoming
 session will be checked to see if it has the authority
 to execute the message key. If not an error message
 will be generated back to originating station
 indicating 'not authorized to use MKE'.

 ORI The ORI must be the valid State ORI assigned to the
 input station. If the ORI is not valid or if it is
 not assigned to the originator an error will be
 returned.

 Text The text portion of the message keys will comply with
 NCIC standards.

 Example:

 [header.]QV.IN0000000.LIC/ABC123.LIS/IN

 Where:

 FOXY The DAC name
 QV The NCIC message key - query vehicle
 IN0000000 The ORI assigned to the input station
 Text The remainder of the message is text: LIC/ABC123.LIS/IN

Output Message Formats

This section will describe output message formats to any stations utilizing the DMPP
2020 protocol.

The processing header will be used by the receiving system to perform processing related
to grouping and displaying the messages. The format of the processing header is as
follows:

 TDAC.Reference.Source.MKE.Date/time.

 Where:

 TDAC Is the name of the device to which the message is
 addressed
 Reference Is a 10 character alphanumeric field as
 entered with the original request, it will contain the
 constant UNKNOWN for responses for which the value is
 not known or the constant UNSOL if the message is an
 administrative message.
 Source This field will consist of the OpenFox™ mnemonic
 associated with the source of the message.
 MKE This is the response MKE, wherever possible this will
 be the same as the request message key, AM for
 administrative messages, SM for notifications, ER for
 error notices.
 Date/Time This will be the date and time that the message
 is being output by the switch, it will have the format
 YYYYMMDDHHMMSSxx

 Where:
 YYYY The 4 character numeric year
 MM Two character numeric month
 DD Two character numeric day
 HH Two character numeric hour (military format)
 MM Two character numeric minute
 xx Two character numeric field representing hundredth of
 a second

